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EBSTRACT

We present the variational equations for maximizing the probability of
correct classification as a function of a 1Xn feature selection matrix B
for the two population problem. For the specilal case of equal covariance
matrices the optimal B 1s unique up\to:scélar multiples and rank one
sufficient. For equal population.means;:the'beSt Ixn B is an elgenvector
corresponding either to the largest'éf‘smallest elgenvalue of Z; Zl, where
Zl and Zz are the nXn covariance?métrices of the two populations. The
- transformed probability of correct classification depends only on the eigen-
value. Finally, a prqcedure is proposed for constructing an optimal or

nearly optimal kXn matrix of rank k without solving the k-dimensional

variational equation.



Results on the Two Population Feature
Selection Problem Using Probability of

Correct Classification as a Criterion
by

B.C. Peters, Jr.

1. Introduction

Let wl and ﬂz

conditional densities’ Pl(x) ~ N(ul,zl) and Pz(x) ~ N(UZ,ZZ) and a priori

be n-variate normally distributed populations with

probabilities oy and ty respectively. In this note we consider some
special cases of the problem of selecting.a 1Xn nonzero vector B which

maximizes the transformed probability of correct classification

h(B) = fmax{alPl(y,B}, asz(y.B)]dy,
R

where Pi(y,B) ~ N(Bui, BEiBT) are the conditional densities of the variable
v =Bx, i =1,2, We assume the maximum likelihood classifier: assign =x to

Ty if alPl(Bx,B) > aZPZ(Bx,B); otherwise, assign- X to HZ'
It is shown in [2] that for the B which maximizes h(B), the

h(3+562 = h(B) exist for all 1Xn vectors

Bateaux differential Jh(B;C) = lim
: 5+0

¢ and



(1)

Sh(B;C) = ay fGPl(y',B;C)dy +a, '/;Pz(y',B;C)dy where the
Rl(B) RZ(B)

Ri(B) are the Bayes regions

Moreover,

(2)

Substituting

(3

R B = {y e R | aP (5,8 > 0P, (7,B) )

R,(B) = {y ¢ R | 0P, (7,B) < 0P, (y,B)}

(11,

O3 § B
P, (y,B;C) = P (0, B ——55 (v - Buy)
(BEiB )
cui , cz.B’
+ (y - Bu,) -
T 1 T
BZB BZ,B

(2) dnto (1) and integrating by parts gives

cleT
§n(B;C) = -a,P,(y,B) (v - By + Cuy
BElB J
Kl(B)
oL,B" . |
-GZPz(YsB) ﬁ(ﬁf - 3112) + Cli2
2 4R, (®

In order to determine 'Rl(B) and RZ(B) it is necessary to solve the



equation alPl(y,B) = asz(y,B) whose roots are those of the discriminant

function

H(y,B) = a(B)y’ + 28(B)y + Y(B),

where

' ~ T
a(B) = B(I; - L,)B

T T2 T Sy 2
T .
: BZ,B o, 2
T T 2" 1
+ (BL.B )(BL,B ) [1n + In — 1.
1 2 BZlﬁT o,

We are not interested in the case where H(y,B) = 0 has no real roots or
holds identically, since in this case we always have h(B) = mak{al,uz},

which is the minimum value that h(B) can attain.

2. The Equal Covariance Case

if 21 = 22 = X, then d(B) =0 and H{(y,B) = 0 has the single root

(&)
CBGy Y H) T

a = 2 .
ZB(ul—uz)

For either Rl(B) = (~@,a) or RZ(B) = (~»,a) substitution into equation

(3) vyields



. T
6h¢B;C) = C(ul - “2) - EEET B(u1 = Wy).
“ BB

Thus, for the optimal B,

‘T . N
" LB

— Bu, = U,).
Brt  * 2

M T
which may be rewritten as

T _BSRL

BT =222

2 gy

It is readily verified that

Tl
BO - (U]_HU'2) bX

satisfies this equation and that any other solution must be a scalar multiple

of Bo°’ Since h(ABO) = h(BO) for X # 0, Bo maximizes h(B). The

corresponding probability of correct classification is
e erf @ 70T L

A nonzero Ixn vector B is called suffieient if h(B) = PCC, where

PCC is the untransformed probability of correct classification



PCC

I

‘ max[dlpl(x), 0P, (x) Jdx

Rn

alPl(x)dx + dsz(x)dx

R R,

R1 and R2 are the Bayes regions in R™:

R = {x ¢ R"| dlrl(x) > dsz(x)}

R2 = {x ¢ R® I alPl(x) < dsz(x)}.

It is shown in [3], that B iz sufficient if and only if B*I(RI(B)) = R1

and B_l(Rz(B)) = R2 up to sets of measure zero. By a straightforward cal-

culation it follows that for Bo = (ul—ﬂz)TZ_l,

0
=

-1
B2l (R, ()
and
B L(R.(B)) = R
o 2o 2

Thus B0 is sufficient and

PCC = erf(%- /(ﬁl—ﬁz)Tz'I(ﬁl—ﬁz)).



3. The Equal Mean Case

If B =Wy = 0, the equation H(y,B) = 0 reduces to

o .3223T dl 2
+ @B BLE) 2+ 1n 2]
[+
BL,B 2

2

_ T
0 = B(Z,~Z,)B'y

In order to avoid complications we will assume throughout this section that

=0, = %3 although the results alsc hold for unequal apriori probabilities.

T
BZZB

T L
BElB

_ T 2 T T
0= B(El-Ez)B y + (BElB )(BZZB Yin
The roots of this equation are =-a and a, where

T ..o T T
(33,8") (B-ZZBT) BI,B
T 4o T

BEZB

T
BZlB - BZzB

For either Rl(B) = (~a,a) or RZ(B) = {(-a,a), substitution into equation

(3) gives

CElBT CEZBT
BZlB 3223

Thus if B maximizes h(B), then’

T

B

5.BY = ol 5Bl
1 T "2

BzzB



which is satisfied if and only if BTT is an eigenvector of 22181. The
BL.B

T ‘Note that Rl(B) = (-a,a) 1f
BZZB
A <1l and RZ(B) = (-a,a) if A > 1. Assuming Rl(B) = {-a,a), the

corresponding eigenvalue is A =

transformed probability of correct classification is

-3

a
h(B) = %'/‘ Pz(y,B)dy +-]2lfP1(y,B)dy

-G -a

o

1 .

a

1 a
==+ erf(—)
2 (BZlBT)I/Z

~ erf(——2—)
BZZBT)IIZ

=1 L - LA
=3 + erf(/iwl n A) erf(fk_l fn A)

[

£(A),
while if RZ(B) = (-a,a), then

h(B) = f(—i—) =1-£Q).

It is easy to show that f'(A) < 0 for A ¢ (0,1). Hence h(B) is maximized
when min{A, %} is as small as possible, -The result may be stated as follows.

Theorem: Let T and Ty be normally distributed populations in R" with equal

means and covariance matrices Zl and 22 respectively. Let’hmin and Amax be



respectively the smallest and largest eigenvaiues of ZI,I If X < 1

271 min A ’
max

A T -
then h(B) 1is maximized for B~ any eigenvector of 22121 corresponding to

. s T s
lmin' Otherwise h(B) is maximized for B any eigenvector corresponding to

A

max’
4. TFeature Reduction to k > 1 Dimensions.

If B is a rank k kxn matrix, it is possible to derive an expression
for 6h(B;C), where C 1s a kXn matrix. Unfortunately, the resulting
variational equation involves integrals over the k-dimensional regions Rl(B)
and RZ(B) which are difficult to evaluate. Thus, it would be desireable
to have a procedure for constructing a kxn matrii one row at a time which
maximizes or nearly maximizes h(B).D If Q is a nonsingular kxk matrix,
then h(Q B) = h(8). Thus, it can be assumed that the rows of B are orthogonal,
or in the two population case, that BElBT and BZZBT are both diagonal
matrices. The following procedures are immediately suggested. Choose a 1Xn
nonzero vector Bl to maximize h(B). Having constructed Bl""’BR
{L < n) choose a nonzero 1Xn vector B£+1 which maximizes h(B) subject

to the constraints

T

B£+1Bi = 0 i3 1,000,458
or to B b} BT = B,, . % BT =0 i=1,...,2
241711 1727, ! *e
By
Let Bk = - be the feature selection matrix for reduction to k dimen-
B
k

sion. Clearly h(B)) < h(By) < ... < h(B) = PCC, since By = (IEIZ)B£+1,



- where Ie is the X% identity matriﬁ and Z 1s an X1 zero vector., In
order to justify the use of either of these procedures it would be desireable
to have a nonzero lower bound on h(B£+1) - h(Bg) when BR is not sufficient.
The orthogonality constraint is computationally more attractive since it is
easy to compute the projection onto the constraint space at each step and
incorporate 1t into a steepest descent procedure. However, the other con-
straint leads to nice theoretical results when applied to the two population
problem with equal population means.

Suppose ul =M, = O and B is chosen according to the theorem in the

1
last section. If B2 maximizes h(B) subject to the ponstraints
T )
BzﬂlBl = BzzzBi =0, and h is differentiable at BZ’ then there are
scalars Al and lz such that
T : T
B n,B
1 2T " ?‘T = .AlleT + A,5,B) .
B.Z.BL B.I.B 1
27172 27272

Since B{ is an eigenvector of zglzl corresponding to an eigenvalue R,

T T
LB 2,8
Lz 22 - B+ 2A)LBL.
B BT B3I BT i - 27721
25182 BptaBy
T
- T
= B'Z,B].

o T _ T _
The conditions 313132 = BlZZB2 = (0 lead to

T
= at
0=28 BlEZB1



10

_lE . It can easily

and B' = 0. But then BY is also an eigenvector of EZ 1

2

be shown that at the ' (&+1)st step , the"l*n vector BR+1 maximizing h(B)
. T T .
subject to the constraints BE+12131 = BR+1Z2B1, 1=1,...,% is an eigen-

1

vector of Z; Zl. Thus the rows of B, are the k eigenvectors corresponding

k

to the largest or smallest elgenvalues of 25121.
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